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Anisotropies in aggregates with biased random walks on two-dimensional lattices
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Irreversible stochastic models of growth in which particles are globally biased to seed are formulated
and studied by Monte Carlo simulations on triangular, hexagonal, and square lattices. In the determinis-
tic aggregation model (DAM), where only the effect of attraction between particles and the seed is con-
sidered, the particles have peculiar paths of motion on each lattice. Aggregates with biased random
walks manifest special anisotropies on the two-dimensional lattices which are the same as those in

DAM’s.
dimensional lattices.

PACS number(s): 64.60.Qb, 05.60.+w, 81.10.Dn

Even though the diffusion-limited aggregation [1]
(DLA) has successfully described a broad range of none-
quilibrium growths [2-6], it is not still well understood
from a fundamental point of view. Furthermore, the
motions of the particles in most studies on DLA and on
similar random aggregates [2—6] have been restricted
mainly to the ordinary random walks, i.e., the pure sto-
chastic motions. In contrast, as in the case of electro-
depositions, particles may be drived by some forces to the
seed or to the cluster and the particles should do some
deterministic motions as well as stochastic ones. To un-
derstand effects on such particle-cluster (particle-seed) at-
traction on random aggregates, several theoretical models
[7-10] have recently been suggested. Meakin [7] has pro-
posed a particle-drift DLA model and shown that the
drift bias to a certain direction makes fractal dimensions
of resulting clusters increase. Block, von Bloh, and
Schnellnhuber [8] have suggested an off-lattice aggrega-
tion model with the particle-cluster attraction described
by the power law (r ~ %) and shown that fractal dimensions
of clusters depend on the exponent a.

Recently we have studied an aggregation model [9] on
a square lattice in which the motions of particles are
biased random walks, otherwise the model is exactly the
same as ordinary DLA [5]. In contrast to isotropic off-
lattice aggregates [8], on a square lattice a combination
[9] of both effects, one from the attraction and the other
from the underlying lattice structure, makes aggregates
anisotropic. The motions of the particles in our model
[9] are biased to the seed as what follows. When a parti-
cle reaches a site on a lattice with the coordination num-
ber z, at the very next step the probability P_,, to hop to
one of four nearest neighbors (NN’s), which is the shor-
test distance away from the seed, is set as

P = +a (0<a<1),

—1-a (1)
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and their probabilities (P
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If =0, P, =P, =1/z, and our model reproduces the
ordinary DLA [1,5]. If a=1, the motion of a particle
from the starting site to the deposition site on a square
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We discuss the universal and nonuniversal properties of these aggregates on the two-

lattice (z =4) is deterministic and the main directions of
the motion are along the directions (=1,11) on a square
lattice because of the lattice structure [9]. We have called
the model with a=1 a deterministic aggregation model
on a square lattice (SDAM). In SDAM the peculiar tra-
jectories of the above-mentioned motion makes the aggre-
gates X-shaped and the effective fractal dimension D of
these clusters is equal to 1 [9]. Physically interesting
models should of course be the models with O<a<1,
which we have called aggregates with globally biased ran-
dom walks on a square lattice (AGRS) [9]. We have in-
vestigated the crossover phenomena [9] from DLA (a¢=0)
to SDAM (a=1) in AGRS by the variation of a and
found that the clusters of AGRS are all X-shaped and
the effective dimension D of those clusters is 1. From
these results it has been concluded that AGRS have the
same critical property as that of SDAM and the cross-
over from DLA to SDAM in AGRS is sudden at
a=0[9]. The bias and the underlying lattice structure
should make the clusters of AGRS anistropic and their
fractal dimension 1. In the particle-drift DLA model by
Meakin [7] on lattices the drift to a given direction makes
the fractal dimension of clusters greater than that of ordi-
nary DLA. In contrast the bias [9] to the seed on a
square lattice makes clusters anisotropic and slim.
Ordinary large-scale square-lattice DLA’s are aniso-
tropic and starlike [5], but on triangular and hexagonal
lattices the resulting clusters are rather isotropic [11]. In
a sense DLA on a square-lattice should be in a different
universality class from DLA’s on triangular and hexago-
nal lattices. We think that it is therefore very interesting
to check whether the anisotropy in AGRS is common for
aggregates with biased RW’s on the various two-
dimensional lattices or not. It is the motivation of this
study to investigate what properties of AGR are univer-
sal on the various two-dimensional lattices and what
properties depend on the specific lattice structure. Let us
now think about the generalizations of our model [9] on
an arbitrary two-dimensional lattice. To be specific, let
us first think about the deterministic aggregation model
(¢=1) on a triangular lattice (TDAM) with z =6. A typ-
ical trajectory of motion of a particle in TDAM is shown
by the bold line in Fig. 1. When a particle starts from a
site on the starting circle, under the rules from Eq. (1)
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FIG. 1. Bold lines which start from a starting site (filled cir-
cle) to the seed (unfilled circle) show a typical trajectory of a
particle in the deterministic aggregation model on a triangular
lattice (TDAM). Siz major axes in TDAM are noted by bold-
dotted lines.

and (2) with a=1, it first moves straight to a site on the
nearest major axis from the starting position. Then it
moves on a zigzag path along the axis to the seed if there
are not any already aggregated particles in that path.
Such six major axes on a triangular lattice are denoted by
bold-dotted lines in Fig. 1. As shown in Fig. 2(a), the ma-
jor axes in TDAM are along lines which connect the seed
site to six nearest sites on the hexagonal lattice which is
dual to the original triangular lattice. In TDAM at the
initial stage when only a few particles are aggregated the
cluster is %-shaped similar to one in Fig. 3. The starting
positions of the particles are then categorized into (A4 —F)
regions and 1-6 regions as in Fig. 3. The particles start-

(a) (b)

(c)

FIG. 2. Major axes of deterministic aggregation models
(DAM?’s) on various lattices. Unfilled circles are seed sites and
filled circles are nearest sites on dual lattices to the original lat-
tices. Directions of main axes are along the bold lines. (a)
DAM on a triangular lattice (TDAM). (b) DAM on a square
lattice (SDAM). (c) DAM on a hexagonal lattice (HDAM).
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FIG. 3. A categorization of starting positions of particles on
a circle centered at the seed (unfilled circle) in TDAM. Filled
circles denote the already aggregated particles in TDAM. Par-
ticles from the A-F regions eventually enlongate the six main

branches but particles from the 1-6 regions only thicken six
main branches.

ing from the (A —F) regions eventually come to the clus-
ter with zigzag paths along one of the major axes and
they are aggregated to the cluster in directions to en-
longate the main branches of the *-shaped clusters. But
the particles from the 1-6 regions are aggregated in
directions to thicken the main branches. In a theory
where the radius of the starting circle is o, the particles
coming from the 1-6 regions are negligible compared to
those from the A4 —F regions. The clusters of TDAM are
therefore very thin x-shaped clusters and the fractal di-
mension D of these is 1. But in the computer simulations
or in experiments the radius cannot be made o, and
there should be definite contributions of particles from
the 1-6 regions. In simulations this effect should be han-
dled very carefully, otherwise we might see some ar-
tifacts. On the two-dimensional lattices deterministic ag-
gregation models, (DAM’s) (¢ =1) have a universal prop-
erty that the effective fractal dimension of the clusters is
1, but the shapes of clusters and the number of main
branches of clusters depend on the lattice structure. The
major axes of a DAM on a square lattice (SDAM) are
along lines which join the seed to four nearest sites on the
square lattice which is dual to the original square lattice
[9]. [See Fig. 2(b).] The major axes of the DAM on a
hexagonal lattice (HDAM) are along lines which join the
seed to three nearest sites on the triangular lattice which
is dual to the original hexagonal lattice. [See Fig. 2(c).]
The clusters of HDAM are also rotated #-shaped clus-
ters and the effective fractal dimension D is 1.

Now let us discuss simulations and their results for ag-
gregates with globally biased random walks (RW’s)
(0<a<1) (AGR) in which the motions of particles are
biased RW’s. Particles start from random points on a
circle centered at the seed with a radius r_,, + R, where
”max 18 the distance between the seed and the most distant
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aggregated particle from the seed (i.e., the maximum ra-
dius of the cluster). In the ordinary DLA [5], R, is safe
enough to be as small as 5. As warned when introducing
TDAM by use of Fig. 3, simulations for AGR on a tri-
angular lattice (AGRT) may show some artifacts if the
radius of the starting circle is too small. To see the effect
of bias correctly, R, should be sufficiently large. In order
to avoid this starting-radius problem and to see the trend
which depends on the variation of R;, we have done
simulations for several different R;’s for AGRT with
given a. The results for simulations for AGRT with
a=0.05 are shown in Figs. 4 and 5. A typical cluster
with r ., =400 of AGRT with =0.05 and R; =400 is
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FIG. 4. (a) A typical cluster of AGRT with «=0.05 and

R;=400. (b) A typical cluster of AGRT with ¢=0.05 and
R, =100.
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FIG. 5. Dependence of InN(r) on Inr for the clusters for

AGRT with a=0.05. The normal curve is for clusters with
R;=100. The dashed curve is for clusters with R, =400.

shown in Fig. 4(a). As you can see from Fig. 4(a) the
cluster is grown mainly along the same six major axes ex-
plained in Fig. 2(a) and the shape of the cluster manifests
anisotropy clearly. A cluster from different R (=100) is
shown in Fig. 4(b). Comparing the cluster in Fig. 4(a) to
one in Fig. 4(b), we can infer that for the same value of o
the width of main branches gets slimmer when R, gets
larger. A method to study a quantitative property of
clusters is to measure the number of particles N (r) within
a distance r from the seed. If clusters are statistically
self-similar fractals, then N (r) is expected to satisfy the
relation

N(r)=C(a)r? (3)
or

InN (r)=DInr +InC(a) (4)

for a suitable range of r, where D is the fractal dimension
of cluster and C(a) is a constant independent of r. Fig-
ure 5 shows the dependence of InN (r) on Inr for the clus-
ters of AGRT with a=0.05 and R, =400, and that with
R;=100. At least ten clusters have been used for each
curve in Fig. 5. We can expect that for the smaller value
for R, the thicker *-shaped cluster occurs. As we can
see in Figs. 4(a) and 4(b), the clusters are anisotropic and
thus the plot of InN (7) vs Inr in Fig. 5 cannot be a strictly
straight line. However, by fitting the relation (4) to the
data in Fig. 5, we can identify the effective fractal dimen-
sion D, from which we infer a quantitative property of
clusters. From data in Fig. 5 in the range 50 <r <200, it
is found that D=1.50+0.02 for AGRT with a=0.05
and R;=100, and D=1.11+0.05 for AGRT with
a=0.05 and R, =400, respectively. We have also done
simulations for AGRT with @=0.05 and R, =30 and got
*-shaped clusters with fat branches and D =1.73+0.01.
From the results for different R ’s we can conclude that if
the radius of the starting circle gets larger, the branches
get slimmer and the effective dimension D becomes small-
er. We thus believe that AGRT for arbitrary small « (f
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a+#0) is quite different from ordinary DLA on a triangu-
lar lattice [11] and the clusters of AGRT are *-shaped
cluster, which is nearly the same as that of TDAM. We
have also done simulations for AGRT with a=0.5 and
R,=100 and gotten very slim %-shaped clusters with
D =1.0£0.02. We can conclude from these results that
the property of AGRT is the same as that of TDAM if
R, — » and the crossover from DLA to AGRT is very
sudden at a=0. Even for finite R;, we can see the
branches of %-shaped clusters clearly, but the widths of
the branches get slimmer (or D — 1) as R; gets larger and
a gets larger.

We have also done similar simulations for aggregates
with globally biased RW’s on a hexagonal lattice
(AGRH). A typical cluster of r,, =400 for AGRH with
a=0.05 and R; =200 is shown in Fig. 6. As you can see
from Fig. 6 the cluster is grown along the same directions
as explained in Fig. 2(c). We have also done simulations
for AGRH with =0.05 and R; =400 and gotten similar
results to those of the corresponding AGRT, except the
directions of main branches. On a hexagonal lattice we
can also conclude that the property of AGRH is the same
as that of HDAM if R,— o« and the crossover from
DLA to AGRH is very sudden at a=0.

The conclusions of this paper are as follows. (i) On
two-dimensional lattices, the critical properties of AGR
are universally the same as those of the corresponding
DAM’s. (ii) Clusters of AGR are anisotropic and the
directions of main branches depend on lattice structures.
The universality in the directions of branches is that they
are along the lines which join the seed to the nearest sites
on the dual lattice to the original lattice. (iii) The cross-
over of AGR from DLA to DAM is very sudden at a=0
and the main branches do exist if a#0. (iv) One can
make as many main branches in the clusters of AGR as
one wants if one chooses a proper lattice. If you choose
suitable R;’s, you can control the width of main branches
of AGR on a given lattice.

The final discussion is on a theoretical conjecture on
AGR. According to the tip theory of growth of fractal
patterns [12—14] the relation dR /dN =cp(R) holds,
where R is the length of a tip of a fractal pattern, N is the
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FIG. 6. A typical cluster of AGRH with «=0.05 and
R, =200.

number of particles in a fractal pattern, p (R) is the prob-
ability that a particle hits the tip, and ¢ is a constant
which depends on the particle size or other geometrical
factors. In AGR the tip should be the end of main
branches. The bias a(70) and the lattice structure
should make particle trajectories hit at the ends of main
branches with some finite probability as in the case of
DAM and thus p (R)=p (a). This means that p(R) is in-
dependent of the length R and proves that R =cp (a)N
and D =1. If this picture is right, the bias to the seed is
the main theoretical reason for the slim branches.
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